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Computer Analysis of Short-Boundary Planar Circuits

TAKANORI OKOSHI, MEMBER,

Absfract—A method of computer analysis of planar (two-dimen-
sional) circuits having an arbitrarily shaped short boundary is pro-
posed. The proposed method is based upon the contour integral
representation of the two-dimensional wave equation. Results of the
computer analyses for simple circuits are compared with analytical
solutions to show the validlty and accuracy of tie proposed method.
Some examples of analyses of practical circuits are also presented.

I. INTRODUCTIO~

THE planar circuit is a circuit concept proposed by one

of the authors in 1969. It is the two-dimensional cir-

cuit that should be positioned between the distributed-

constant (one-dimensional) circuit and the waveguide

(three-dimensional) circuit; it is defined as an electrical

circuit having dimensions comparable to the wavelength

in two directions but much less thickness in one dh-ection.

The planar circuit can be classified into three types: the

triplate type, open (or asymmetric) type, and short-

boundary type [1].

In the past five years, the authors and their co-workers

in Japan have been concentrating principally upon the

analysis and design of the triplate-type planar circuits,

which have open-circuit boundaries. It was because the

investigation of the triplate type seemed most urgent in

connection with the development of the microwave IC

technology.

This paper proposes a method of the computer analysis

of an arbitrarily shaped, short-boundary planar circuit.

Some examples of analyses of practical circuits are also

presented.

The computer-analysis technique described in this paper

enables us to know the precise characteristics of circuits

such as are shown in Fig. 1(a) – (c). l~oreover, in the case

of Fig. 1 (b), the height of the waveguide need not be

small compared to the wavelength as required by the

definition of the planar circuit; the present analysis can

also be applied to the ordinary TE1o-mode waveguide

circuitry provided that no transverse electric field is
present. Therefore the advantages of the computer-

analysis technique of the short-boundary-type planar cir-

cuit extend to the conventional waveguide technology.

II. PRI~CIPLE OV ANALYSIS

The computer-analysis technique developed for the

triplate type may he modified to its “dual” form for its

application to the short-boundary type. The most impor-

tant change stems from the fact that the coupling ports
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Fig. 1. Examples of the short-boundary planar circuit. (a) Coaxial-
coupled type. (b) Waveguide-coupled type. (c) Mixed type.

are of entirely different form. For example, when a planar

circuit is coupled to the external circuits through wave-

guides as shown in Fig. 1(b), a computational process is

required to provide the (‘match” between the electro-

magnetic field in the planar circuit and the proper fields

in the waveguides at properly selected reference planes.

The coaxial ports as shown in Fig. 1(a) and (c) also

require a similar computational process. In any case, the

basic equation for the open-boundary planar circuit can

be utilized in the earlier stage of the following analysis.

In [1], it was shown that by using Weber’s solution of

the two-dimensional wave equation [2], the RF voltage

at a point upon the periphery of an arbitrarily shaped,

homogeneous two-dimensional wave medium is given as

2jv(s) = 4[k Cos L9HI(’) (h”) v (s0)
Jc

— jqd HO(2) (h)in(so) ] [1s0. (1)

In this equation, HO(2Jand HI(2J are the zeroth-order and

first-order Hankel functions of the second kind, respec-

tively, i. denotes the current density floM@ out~vards

along the periphery, s and sOdenote the distance along the

periphery C. The variable r denotes distance between
points (s) and (.s0), and o denotes the angle made hY the

straight line from point (s) to point (s0) and the normal

at point (s0), as shown in Fig. 2. When i. is given, ( 1) is a

second-kind Fredholm. integral equation with respect to

the RF voltage ~.

To avoid useless confusions, we restrict the following
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Fig. 2. Symbols used in the basic equation.

discussion to two cases. The first case is the short-boundary

planar circuit having two coaxial coupling ports as shown

in Fig. 1(a). The second case is that having two wave-

guide coupling ports as shown in Fig. 1(b). The descrip-

tion of the latter case will be emphasized for its practical

importance. More complicated cases such as that shown

in Fig. 1(c) and those circuits having three or more ports

will be dealt with by modifying or combining the analyses

for the previous two cases,

III. SHORT-BOUNDARY PLANAR CIRCUIT

HAVING TWO COAXIAL COUPLING PORTS

A. Basic Equation

For numerical calculation we divide the periphery of a

circuit as shown in Fig. 1(a) into M incremental sections,

and provide M sampling points at the center of each section

as shown in Fig. 3. We assume that current flows uni-

formly in each section. The peripheries of the coupling

conductors are also divided into m and n incremental

sections, and sampling points are provided.. Those m +

n + M sampling points are numbered as follows:

1) conductor 1: i = 1 ~ m;

2) conductor 2: i = (m + 1) N (m + n);

3) circuit periphery: i = (m+ n + 1)x (m + n + M).

It was shown in [1] that if we rewrite (1) into an incre-

mental form, we obtain a matrix equation

2’[1=’’G’’][I+’””’’F”‘2)
Icos 9ijH1t2J(krij) Wj, (i # j)

G,j =
o, (i = j)

{

Ho(z)(hi;) , (i # j)
Fij =

1 – (2j/7r) [log (kwi/4) – 1 + ~],, (i = j)

where ~ denotes Euler’s constant ( =0.5772), Wi, Wj,

and Ii ( = —in?Vt) denote the widths of the ports (i and j)

and the current flowing into port i, respectively, and

N&m+n+M.

~(m+n+M)

Fig. 3. Symbols used in the computer analysis—I (case of the
coaxial-coupled type).

(Equation (1) is derived in [1] for the case in which

there is no “hole” in the circuit, in other words when the

circuit pattern is singly connected. However, (1) is

applicable also to a multiply connected pattern such as is

shown in Fig. 3; the proof is given in the Appendix.)

If we further define

[U] = 2.j[E] – k[G], (E: unity matrix) (3)

[H] = jup d[F] (4)

we obtain, immediately from (1), a simple equation

[Uij]

VI

v,
.
.

1
.

Vh?J

= [H,$]

11.N
(5)

B. Simplification oj the Basic Equation

For simplicity we assume the following conditions for

the position and size of the coupling conductors.

1) The radius of the conductors R is much less than the

wavelength (R<< X, or kR << 1).

2) If we denote the distance from the center of the

conductor to the nearest spot upon the circuit periphery

by r~ia, R << rmin holds.

Then we may assume that the voltage V and current

density i. are both uniform along the periphery of the

conductor.1 Therefore, if the voltages and currents of two

terminals p and g (see I?ig. 3) are denoted by V., Vg, I,,
and IQ, respectively, the voltages and currents in each

section around the conductors are given as VP, Vg, IP/m,
and I*/n. On the other hand, along the circuit periphery

V = O holds. Hence, we may write

1 We may remove this assumption if we consider (m — 1) and
(n – 1) higher order modes in coaxial waveguides 1 and 2, respec-
tively. Then we may take into account the (probably) reactive line
impedances for those higher order modes, and we no longer need the
reduction of the constraints performed to obtain (7) and (8). A
longer computer time will be required, however.
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v,

v,
.

“1n = [H,j]
.

v,

IP/m
.
.
.

Ip/m

Iq/n
.
.
.

1,/n

lm+n+,
.

C. Derivation of Admittance Parameters

Wemayderive theadmittance parameters YPv, YPg, YgP,

and Y~~directly from H’ and U1. I’irst, wetemporarily con-

sider that all the (M + 2) sampling points are coupling

terminals and that the planar circuit is represented by an

(M + 2)-port equivalent circuit. The admittance matrix

Y of such a circuit is given from (9) as

[Y] = [H’]-l[U’]. (lo)

The desired parameters Y,,, Y,q, Y.,, and 1’,, will be

found in the top left corner of the matrix Y. (This method

can readily be applied to cases in which the circuit has

three or more ports.)

However, practically, the previous computation requires

rather long computer time. When the circuit has only two

ports, we have a simpler alternative which will be de-

scribed in the following subsection.

D. Derivation of T~ansfer Parameters

We assume that the terminals p and q are driving and

load terminals, respectively, and impedances 22 and Z,

are connected to them. Then 2P must have a negative real

part, and must be equal to the driving point impedance

multiplied by — 1, provided that a stable oscillation exists

(6)

scalar

Ill
o
.
. M
.

0 [

.

.

I m+n+M.

Equation (6) consists of N( = m + n + M)

equations, whose number is greater than the number of

variables (J4 + 2). To decrease the number of con-

straints, we define reduced matrices with (M + 2) X
(M + 2) elements:

in the circuit. Since

Z, = – V./IP

z, = – v*/1,

holds, (9) is rewritten as

(11)

(12)

= o (13)

IP/m

1,/r~

Im+n+l

------------------------------------ :-------------------------

m m+n .

x U(m+?t+m z U(?++m \ Umt.+1 “ “ “ “ “
j=l j’=m+l m+n+l .

{ [H’] + T}LZP[X] + nZq[W]}

1
. . 1“ .

. !“ .

. . ;. .

1“ u m+n+M
. . m+n+Mj“”. ”

.

.

.

.Im+n+,+l

where X and W are again matrices determined by the(7)

(8)

(9)

,

of the m

shape of the circuit:

~:, :0...0

!1

:..

U,J \..

[x]= - ~. .
. :“.
. !“.

U(M+2)1’ \ 0. ..0

[H’] = (similar to the above).

Then we may further rewrite (6) as

(14a)-v,”

v,

EU’-J o

.

.

.0

Ip/m

Iq/n

I *n+l
.

.

.

~m+.+B

()...0-
. .
. .
. .
. .
. .

0. ..o-

[W] === (14b)

The previous simplification implies that “each

(or n) sampling points is equally weighted.”
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In order that (13) hasanontrivial solution, i.e., a steady

field exists in the circuit,

det [H’ + mZPX + nZ,W] = 0 (15)

must hold. This equation leads directly to a bilinear rela-

tion between –ZP, the driving point impedance, and Z~,

the load impedance, as

_z = A’Z, + B’
P

C’Z. + D’
(16)

where A‘, Br, C’, and Dr are given as the following deter-

minants

A’ = n det

Hn’ & HIS’ . . . H1~,l
. .

H,; U22! . - .
. . . .

1
(17a)

L
. . .. . .
N,l’ UN,; HN,3’. . .HN,N,’‘1

B’ = det [H.;] (17b)

[

u;, u:, H13’ . . . HIN,’

. . 1
u,{ Unf . d

C’ = wm det . . I (17C)

1. . . .1
1

. . . .
UN,l’ UN,Z’ HN,~’. . .HN,N,’ 1

[

~’ H,,) . . . H ,N,’
. . 1

I 1
u,< : .

D’=mdet . . .
. . .
. ,

UN,I’ HNi. . .HN,N’

(17d)

where N’ A ill + 2.

Equation (16) shows that A’, B’, C“, and D’ are quan-

tities proportional to the so-called transfer parameters

A, B, C, and D of the equivalent two-port circuit. In order

that the reciprocity condition ( (AD – BC) 112= 1) holds,

we should divide A’, B’, C’, and D’ by (A’D’ — B’C’) 112
to get A, B, C, and D, respectively, as

[1
AB

[1
A’ B’

= (A’D’ – B’C’)-’/’ . (18)
CD C, D,

Iv. SHORT-BOUNTDARY PLANAR CIRCUIT

HAWNG TWO WAW3GU1DE COUPLINTG PORTS

A. Basic Equation

We now consider a waveguide-coupled circuit as shown

in Fig. 1(b), but having a more arbitrary peripheral

shape. The periphery of the circuit is again divided and

numbered, as shown in Fig. 4, as follows:

4Hm+n+fl)

1

m

[m

Kj 1n

f
#(m+n+M)

Fig. 4. Symbols used in the computer analysis—II (case of the
waveguide-coupled type).

1) input port 1: i = 1 mm;

2) output port 2:i = (m+ 1) ~ (m + n);

3) circuit periphery:i = (m+ n + 1) w (m+n+ M);

and m + n + M ( = N) sampling points are provided. The

derivation of the N X N matrix equation (5) follows

entirely the same process as was described in the preceding

section.

B. Simplification o.f the Basic Equation

We now assume for simplicity that straight waveguide

sections with appropriate length exist on both sides of the

input and output planes, so that only the TEIO-mode

exists at those planes.z Under this assumption we may

relate ~1 x V. and 11 = l., V.+1 ~ VW. and 1~+1~ ~~+~

with simple proportionality formulas. We use -representa-

tive values of those voltages and currents defined as V,
and VQ: voltages at the center of the input and output

reference planes, respectively; and 1P and IQ: currents

flowing across the entire widths of the input and output

reference planes, respectively. Since the variation of the

voltage and current across the reference planes are both

sinusoidal,

where

,

VI = CMvp

I
1A = alIp/m

V2 = CY2VP 1, = aZIP/m
. .
.
.

v. = a.v, I., = aJP/m

(19)

Vm+l = @iv,

Vm+, = fhv,

.

v.+. = Bnvq

Im+l = &I./n

1~~, = &Jq/n
. (20)
.

z We may remove half of this assumption, i.e., the presence of the
straight waveguide sections “inside” the reference planes, if we con-
sider (m — 1) and (n — 1) higher order modes in the input and out-
put, waveguides, respectively. Then we may take into account the
(probably) reactive waveguide impedances for those higher order
modes, and again no longer need the reduction of the constraints
performed to obtain (22) and (23).
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where

Using the previous relations, we may rewrite (5) as

[u%,]

Ilvp -

.

.

%VP

31VQ

.

pnvq

o

.

0

I m+ .+1

.

.

.

I m+n+AI.

Following the procedure described in the preceding sec-

tion, we again define the following (Ill + 2) X (fil-+ 2)

matrices to decrease the number of c

[u’]

—

mm m m+.

‘i=l j=l i=l .7=m+l

m+% m m+ II m+%

,=m+l ~=1 i=m+l j=m+l

------------------------------------------

m ?n+n

.
.

. .

.

straints, as

m

E Ut(rn+n+l) “ “ “

m+ n

z Ui(m+n+l) “ “ “

=m+l

.----------------_----

.pm+n+l . . . . .
m+n+l .

/. .

:. .

1.

1. u m+n+,lf

. . . . . . m-tn+M

[FJ’] = (similar to the above). (23)

Using the previous matrices, we may rewrite (21) in a

form identical to (9). The transfer parameters are also

derived in the same way.

~. EXAMPLES OF NUMERICAL ANALYSIS

A. Short-Ciycuited Radial Line

To show the validity and accuracy of the proposed

method of analysis, two examples of numerical analysis

whose results can be compared with analytical solutions

will first be described. The first example is of the coaxial-

coupled type: a thin radial line terminated by a short-

circuit wall as shown in Fig. 5.

=a==”
+2Rk

I

Fig. 5. A radial line.
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l-\\ \___——-- [280)

-25

r

--—- ‘- ‘—— {2701

Fig. 6. The computed input impedance of a radial line. Note that
the real part (abscissa) is exaggerated to shuw the computational
error.

For such a one-port circuit, the driving-point impedance

is given [1], instead of ( 16), by

This driving-point impedance has been computed for di-

mensions (see Fig. 5) R, = 1 mm, R. = 10 mm, and d =

0.5 mm, at 21 frequencies ranging between 1<( z %rj”/c) =

200 w 400 [m-l]. Various numbers of divisions have been

used to obtain the estimate of the computation error.

The results of the cases for ~}~= 10, are shown in Fig. 6.

The abscissa and the ordinate show the real and imaginary

parts of the driving-point impedance, respectively. Note,

however, that the abscissa is expanded by a factor of 100

to exaggerate the computation error. Small circles upon

the ordinate show the theoretical values [3]

ZOid sin (0, – O.)
–Z, = –j—

21rR, COS(pi – 6.)
(25)

where subscripts i and o represent the inner and outer

boundaries, respectively, 0 and v are the quantities defined

by

HOW (z) = J,(x) + .jN,(z) = Go(x) exp ( ~o(~) )

where x = lcr,and ZO, denotes the wave impedance at the

inner boundary, defined as

Z,, = 1207r{Go(kRJ /GI(kR,) ) [Q].

The bracketed numerals in Fig. 6 denote the wavenum-
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her b m--’. Some of the broken curves (k = 200;210,

220~m-~]) seem to converge for increasing 31 to values
(Iifierellt from analytic Onwa It is natural because m is

finite.

The estimate of the error obtained from Fig. 6 is several-

tentholm~s for therealpartj and several ohms (inmost

eases below 2 !2) for the imaginary part. The series reso-

nance frequency obtained with the numerical analysis is

15.68 GHz (k == 328 m-~) for m = 10, &l = 40, which

shows qn error of approximately 1 percent as conipared

with the analytical value 15.87 Gl% (k = 332 m–l).

B“ Urhifomt Waveguide i%%io?z

Another examplej whose results tiafi be compared with

analytical ones, is a uniform waveguide section. A finite

section of the standard X band rectangular waveguide

with a (width) = 22.~ mm, h (height) = 10.2 mm, and

1 (length) = 2a = 45,8 mm is asstimed to be terminated

by a resistive sheet placed perpendicularly with respect to

the waveguide axis,; the surface resistance of the sheet is

assumed to be equal to the waveguide impedance

at f = 10.00 Gl!h (k = 209 m–~), which is 222.2 [!2~.

The results of the numerical computation of the driving-

point impedance are shown in Fig. 7(a) with small dots,

for m = n = 10, ill = 40. In the same figure, the theo-

retical value

(%L/ZO) +7’ tan (27rl/Xg)jjin ~ go _.-_&.
1 -t-J (ZL/.ZO) tan (27rl/AQ)

(27)

is also plotted with small crckseti where %Ll ZO, atid kg

denote the load impedance (222.2 [sI]), the waveguide

impedance at the given freqtieriey, and the wavelength

in the guide, respectively. The cimfiplicated part (below,

right) of Fig. 7(a) is shown in Fig. 7(b) in an enlarged

scale.

c. wawgukk Section Including a Thick Inductive W&low

In the following three subsections, more ~ractical cif-

cuits are’ anhlyzed mnnerically; the obtained results are

compared with the approximate analyses and experimental

data. In those riumerieal analyses, for convenience of com-

parison, the obtained transfer parameters are once con-
Ver$ed into equivalent T-circuit parameters; this Con-

version process will first be described..

We ccmsi&r a waveguide sectioii including a symmetri-

cal obstacle, a thiol: inductive window as in the example

shown i~~ Fig. 8 (s,), and represent the entire sectibn by

three equivalent circuits: those of two straight sections

and on equivalent T’-circuit of thd obstacle itself.
If \ve ~erlote tbe transfer paranleters of the entire S@C-

ticm, the straight sections and the obstacle by F., FL, and

1“~, revfieckively,

1~.~ = l~L~~FZ’]~PL]. (28)

Ii the Am&@ swticms are Iossleiw;

[$?1 Irn(Zi.)
k=160 (m-l]

100- k.84-----%
/

/ ‘\
// \

\

50 - / \
I

/’
k=170-gj

L-

k

200● 250 300 [Ql ~/ Re(Z~n)

‘--- _/.=”’

T

I \\ kh3

[
\

-1oo
\

(a)

20 Irri(Zi. )

[Q}[

e

o J

-lo -

/’
/

,/

-20- /

(b)

Fig. 7’, The computed input, impedance oj a wavegtiide section.
(a) The overall frequency characteristics. (b) An enlarged figure
of a portion.

(a)

Z,Jk)
+

z. Zo(k)

(b)

Fig. 8. Equivalent circuit representation of a symmetrical wave-
guide obstacle. (a) A thick inductive window (an example). (b)
The equivalent T-circuit representation.

[FL] = . (29)

[+),iff) co(+)J
9
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From the elements of F. mmputecl numerically and those

of FL, the elements of FT are obtained as

,[1

44~ .&

[1’,] = = [F.L]-’[F.~[FL]-’. (30) 1.

CT DT

On the other hand, FT is expressed by the T-circuit param-

eters as

[

.??.~ Z6 ~%azb + Zbz

1

3

[F~j = (l/z.) ~ (31)

Z. + Z&
(-
x(
z,

Hence, the ~orrnalized T-circuit parameters are given in

terms of the computed elements of F~ as
2

z= 1

()

x=
.— &j—

~ – CTZ(I 20

-=%ii+-’%)Zb

Z(I

(32)

(33)

Fig. 9 shows the results of computer analyses of the

frequency characteristics of thick inductive windows. The

ordinate gives the normalized T-circui$ parameters XJZO

and x’b/ZO. The dimensions of the ci?cuit are assumed to be

Case 1:

:?4)5

*/ X,

/
.=# Lo

()+XL)

J““ 70
*~——.-L--JJ-”----J--

,:,

220 240 ‘2EJ

k [ m“l]

Fig. 9. Tlw computed equivalent-circuit parameters of thick
a = 22.9 mm d~/12 = 2.29 mm z = 2,29 mm inductive windows. Crosses show the results of the approximate

analysis described by Marcuvitz [43.

L = 24.045 mm

Case %?:

a = 22.9 mm d~/2 = 2.29 mm 1 = 4.58 mm
a

L = 25.19 mm.

T
The total sampling-point number is 66 in case 1, and 68 in 20

cgse 2.

The dots in EIg. 9 show the results of the coqiputer

analyses. The crosses show the approximate theoretical

values described in [4]. The difference between d~ts and

crosses is found to be “less than Q.02. (The errors in Xb/~~ 15-

might seem rather large; how%ver, note that the scales of

the ordinate for X~/ZO and Xa/20 are different. )

D. Waveguide Sections Including Corners ()2 \,

The dots in Fig. 10 show the results of the computer 10 -

analyses of 30° apd 60” waveguide corners. The ordinate

again shows XJ2?o and Xb/.&, The circuit diinensions are

a = 22.9 mm and L = 22,9 mm, and the total sampling-

point number”N = 66 for a = 30° and N = 72 for a = 6Q0.
Small crosses in the figure show the experimental data 05-

found in [4].

E. Waveguide Sections Including Post I
The dots @ Fig. 11 show the results of the computer

analyses of waveguide se@ions including post, The circuit o 160 180 200 240 2&-----

dimensions are a = 22.9 mm and L = 22.9 mm. and the
k f ~.l ] 220

total sampl$g-point &mber N = 72, including 12 poiinte Fig. 10. ‘I’he computed equivalent-circuit parameters of w nve-

around the post, Small cros:es show the experimental data
guide come~s. Crosses show th,e experimental data described by
Mareuvitz ~4~.

found in ~4~,
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Osr d=2.29mm

~L. J

160 1s0 200 220 240 260

k [m-’]

05[ d=4.58mm

‘:-
k [m-’]

Fig. 11. The computed equivalent-circuit parameters of a post
in a waveguide. Crosses show the results of the approximate
analysis described by Marcuvitz [4].

(a)

C2c’

@
c,

c,
(b)

[elc3
CL

(s)

K
\/ (%)

le]q

Fig. 12. Proof of (I) foramultiply connected planar circuit pattern.

VI. CONCLUSION

The basic program for the computer analysis of arbi-

trarily shaped, short-boundary planar circuits has been

completed. The validity and error of the proposed method

of analysis has been shown through comparison with

theories. The required computer time is still long; for

example, about 10 min are required to obtain all the dots

in Fig. 9 using HITAC-8800, one of the standard Japa-

nese high-speed computers. The improvement of the

program toward shorter computer time and better accu-

racy is left for further efforts.

APPENDIX

PROOF OF (1) FOR A MULTIPLY CONNECTED

CIRCUIT PATTERN

We now consider a planar circuit pattern having a hole

as shown in Fig. 12(a). We connect the outer and inner

boundaries, Cl and C~, with contours C~ and Cd which are

infinitesimally separated, and give a direction of integra-

tion, as shown in Fig. 12(b), to define 0. For the entire

The voltage V (.s) in the left-hand side of (1) in the

text needs to be known only upon Cl and C2. If we con-

sider cases in which s is located somewhere upon Cl or

Cz and sOis located somewhere upon C3 and C4, we obtain

for the corresponding points upon Cz and Cl

[0],3 = [o]c,+ ~. (36)

Hence,

~COS e]c3= – ECOS0Jc4. (37)

Putting (34), (35), and (37) into the right-hand side of

(1), we find that the integrals along C, and CAcancel each

other. Hence, we may apply (1) to a pattern like Fig.

12(a) provided that the dhection of integration along

Cl and Cz be carefully defined.
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