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Computer Analysis of Short-Boundary Planar Circuits

TAKANORI OKOSHI, memeeR, 1EEE, AND SEIKO KITAZAWA

Abstract—A method of computer analysis of planar (two-dimen-
sional) circuits having an arbitrarily shaped short boundary is pro-
posed. The proposed method is based upon the contour integral
representation of the two-dimensional wave equation. Résults of the
computer analyses for simple circuits are compared with analytical
solutions to show the validity and accuracy of the proposed method.
Some examples of analyses of practical circuils are also presented.

I. INTRODUCTION

HT planar circuit is a circuit coneept proposed by one

of the authors in 1969. It is the two-dimensional cir-
cuit that should be positioned between the distributed-
constant (one-dimensional) ecircuit and the waveguide
(three-dimensional) circuit; it is defined as an electrical
circuit having dimensions comparable to the wavelength
in two directions but much less thickness in one direction.
The planar circuit can be classified into three types: the
triplate type, open (or asymmetric) type, and short-
boundary type [1].

In the past five years, the authors and their co-workers
in Japan have been concentrating principally upon the
analysis and design of the triplate-type planar circuits,
which have open-circuit boundaries. It was because the
investigation of the triplate type seemed most urgent in
connection with the development of the microwave IC
technology.

This paper proposes a method of the computer analysis
of an arbitrarily shaped, short-boundary planar circuit.
Some examples of analyses of practical circuits are also
presented.

The computer-analysis technique described in this paper
enables us to know the precise characteristics of eircuits
such as are shown in Fig. 1(a)—(¢). Moreover, in the case
of Fig. 1(b), the height of the waveguide need not be
small compared to the wavelength as required by the
definition of the planar circuit; the present analysis can
also be applied to the ordinary TE;r-mode waveguide
circuitry provided that no transverse electric field is
present. Therefore the advantages of the computer-
analysis technique of the short-boundary-type planar cir-
cuit extend to the conventional waveguide technology.

I1. PRINCIPLE Ol ANALYSIS

The computer-analysis technique developed for the
triplate type may be modified to its “dual” form for its
application to the short-boundary type. The most impor-
tant change stems from the fact that the coupling ports
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Fig. 1. Examples of the short-boundary planar circuit. (a) Coaxial-
coupled type. (b) Waveguide-coupled type. (¢) Mixed type.

are of entirely different form. For example, when a planar
cireuit is coupled to the external circuits through wave-
guides as shown in Fig. 1(b), a computational process is
required to provide the “match” between the electro-
magnetic field in the planar circuit and the proper fields
in the waveguides at properly selected reference planes.
The coaxial ports as shown in Fig. 1(a) and (¢) also
require a similar computational process. In any case, the
basic equation for the open-boundary planar circuit can
be utilized in the earlier stage of the following analysis.
In [1], it was shown that by using Weber’s solution of
the two-dimensional wave equation [2], the RF voltage
at a point upon the periphery of an arbitrarily shaped,
homogeneous two-dimensional wave medium is given as

9V (s) = jﬁ [k cos 0HL® (k) V (s0)

— Joud Ho® (kr)7,(so) ] dso. (1)

In this equation, Hy® and H;® are the zeroth-order and
first-order Hankel functions of the second kind, respec-
tively, 4. denotes the current density flowing outwards
along the periphery, s and s, denote the distance along the
periphery C. The variable r denotes distance between
points (s) and (so), and 8 denotes the angle made by the
straight line from point (s) to point (s;) and the normal
at point (s), as shown in Fig. 2. When 7, is given, (1) is a
second-kind Fredholm integral equation with respect to
the RF voltage V.

To avoid useless confusions, we restrict the following
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Fig. 2. Symbols used in the basic equation.

discussion to two cases. The first case is the short-boundary
planar cireuit having two coaxial coupling ports as shown
in Fig. 1(a). The second case is that having two wave-
guide coupling ports as shown in Fig. 1(b). The descrip-
tion of the latter case will be emphasized for its practical
importance. More complicated cases such as that shown
in Fig. 1(e) and those circuits having three or more ports
will be dealt with by modifying or combining the analyses
for the previous two cases.

IIT. SHORT-BOUNDARY PLANAR CIRCUIT
HAVING TWO COAXIAL COUPLING PORTS

A. Basic Equation

For numerical caleulation we divide the periphery of a
circuit as shown in Fig. 1(a) into M incremental sections,
and provide M sampling points at the center of each section
as shown in Fig. 3. We assume that current flows uni-
formly in each section. The peripheries of the coupling
conductors are also divided into m and 7n incremental
sections, and sampling points are provided. Those m +
n + M sampling points are numbered as follows:

1) conductor 1:¢ = 1 ~ m;

2) conductor 2:2 = (m + 1) ~ (m + n);

3) circuit periphery:i = (m+n+ 1)~ (m+n-+ M).
It was shown in [17] that if we rewrite (1) into an incre-
mental form, we obtain a matrix equation

Vi Vi I

27 - | = k[G] + Jop dLF ;] ()
V Vw Iy

cos 0 LD (kry;) W, (7 #7)

0, (’i =7)

Ho® (kryy) (t#7)

L — (2j/m)[log (kW:/4) — 1+ ~], (i=7)
where v denotes Euler’s constant (=0.5772), W,, W;
and I;(= —i,W,) denote the widths of the ports (7 and j)

and the current flowing into port 4, respectively, and
Naom+n4+ M.
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Fig. 3. Symbols used in the computer analysis—I (case of the
coaxial-coupled type).

(Equation (1) is derived in [17] for the case in which
there is no “hole” in the circuit, in other words when the
circuit pattern is singly connected. However, (1) is
applicable also to a multiply connected pattern such as is
shown in Fig. 3; the proof is given in the Appendix.)

If we further define

[U] = 25[E] — E[G], (£: unity matrix) (3)
[H] = jop d[F] (4)
we obtain, immediately from (1), a simple equation
[V 1]
Vs, I,
(U] - | =[HS]| - (5)
_VNJ _.[N.J

B. Simplification of the Basic Equation

For simplicity we assume the following conditions for
the position and size of the coupling conductors.

1) The radius of the conductors R is much less than the
wavelength (B <\, or kR < 1).

2) If we denote the distance from the center of the
conductor to the nearest spot upon the cireuit periphery
bY 7min, B << "min holds.

Then we may assume that the voltage V and current
density ¢, are both uniform along the periphery of the
conductor.! Therefore, if the voltages and eurrents of two
terminals p and ¢ (see Fig. 3) are denoted by V,, V,, I,
and [, respectively, the voltages and currents in each
section around the conductors are given as V,, V,, I,/m,
and I,/n. On the other hand, along the circuit periphery
V = 0 holds. Hence, we may write

! We may remove this assumption if we consider (m — 1) and
(n — 1) higher order modes in coaxial waveguides 1 and 2, respec-
tively. Then we may take into account the (probably) reactive line
impedances for those higher order modes, and we no longer need the
reduction of the constraints performed to obtain (7) and (8). A
longer computer time will be required, however.
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il [ Tofm
: rm ' m
v, Lfm
Ve I,/n
LU:] . ¢ no=[Hy] n . (6)
¥}q I q./n
0 Lnynsa
¢ M : M
o] S

Equation (6) consists of N(=m + n 4+ M) scalar
cquations, whose number is greater than the number of
variables (M 4 2). To decrease the number of con-
straints, we define reduced matrices with (M + 2) X
(M 4+ 2) elements:

i m m m mtn ! m ‘1
Z Z Uii Z E Ui]' Z U1(7n+n+l) b
=1 j=1 i=1 j=m+1 =1
mtn  m mtn  min mn
22U 2 Ui 2 Uingngnye -
t=m-+1 =1 i==m+1 j=m-1 i=m+1
[:(] ,j = m m+n
22 Utngninyi 22 Utngngnyi| Ungnga =+ + « -
7=1 j=m+1 mtnt1
Um+n+M
L e e 1 e s e s s mAnt+M
(7)
[H"] = (similar to the above). (8)
Then we may further rewrite (6) as
Vo M1 :o/ m —‘
2 2
Vq [q/n
[vj|o =[H'] | Iminn (9)
. M M
L 0 | _I myn+M-

¥

The previous simplification implies that “each of the m
(or n) sampling points is equally weighted.”

C. Derivation of Admaittance Parameters

We may derive the admittance parameters Yo, ¥y, Voo,
and Y, directly from H' and U’. First, we temporarily con-
sider that all the (M + 2) sampling points are coupling
terminals and that the planar circuit is represented by an
(M 4 2)-port equivalent circuit. The admittance matrix
Y of such a circuit is given from (9) as

[Y]=[HTTU ] (10)

The desired parameters Y,, Y., Yip, and Y, will be
found in the top left corner of the matrix Y. (This method
can readily be applied to cases in which the circuit has
three or more ports.)

However, practically, the previous computation requires
rather long computer time. When the circuit has only two
ports, we have a simpler alternative which will be de-
scribed in the following subsection.

D. Derivation of Transfer Parameters

We assume that the terminals p and ¢ are driving and
load terminals, respectively, and impedances Z, and Z,
are connected to them. Then Z, must have a negative real
part, and must be equal to the driving point impedance
multiplied by —1, provided that a stable oscillation exists
in the circuit. Since

Zp = —'Vp/Izz (11)
Z, = _Vq/lq (12)
holds, (9) is rewritten as
rI,/m
I1,/n
{[H' ]+ mZ[X]+ nZ W1} | Inpars | =0 (13)
LIm«(»n—l—]l/[—

where X and W are again matrices determined by the
shape of the circuit:

R
r Ull’ 20...0“
U/ | -
[xXJ=| - |- (14a)
-U(M+2>ll ' 0---0]
v 2 1
0 Uy |0-.-0]
cl Uw
wl=1-1 - ; (14b)
10 | Ugaryne’ | 0---0]
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In order that (13) has a nontrivial solution, i.e., a steady
field exists in the cireuit,

det [H' + mZ,X + nZ W] =0 (15)

must hold. This equation leads directly to a bilinear rela-
tion between —Z,, the driving point impedance, and Z,,
the load impedance, as

A'Z,+ B

7. =
PCZ o+ D

(16)

where A’, B’, C’, and D’ are given as the following deter-
minants

2 )
(Hy Uy Hy' oo« Hiv'
HZII UZZ’ -
A’ =ndet | - . . (17a)
—HN’l, UN'?’ —HN’3/'"HN’N"—
B’ = det [H.;] (17b)
< %
FUny  Un' Hy' oo« Ha''
Uag' Uy
C' = mndet | - . (17¢)
LUnnt' Unrd’ HN’3I' «Hyy']
1
[Un Hy' -+o Hn'7
Uy
D' = mdet . (17d)

L Unt' Hyod'« o ~Hyno'

where N’ & M + 2.

Equation (16) shows that 4’, B/, C’, and D’ are quan-
tities proportional to the so-called transfer parameters
A, B, C, and D of the equivalent two-port circuit. In order
that the reciprocity condition ((AD — BC)12 = 1) holds,

we should divide A’, B, ¢/, and D' by (A’D' — B'C’)'2
to get A, B, C, and D, respectively, as
A B A" B
= (A'D' — B'C")—12 (18)
¢ D ¢ D

IV. SHORT-BOUNDARY PLANAR CIRCUIT
HAVING TWO WAVEGUIDE COUPLING PORTS

A. Basic Equation

We now consider a waveguide-coupled circuit as shown
in Fig. 1(b), but having a more arbitrary peripheral
shape. The periphery of the circuit is again divided and
numbered, as shown in Fig. 4, as follows:
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H#{ ml-rn+1)

m [' ol : } n
L“W
#(m+n+M)

Fig. 4. Symbols used in the computer analysis—II (case of the
waveguide-coupled type).

b ansrara

1) input port 1: 7 = 1 ~ m;
2) output port 2: 7 = (m + 1) ~ (m + n);
3) ecireuit periphery:¢ = (m+n+ 1) ~(m+n+M);

and m + n + M (=N) sampling points are provided. The
derivation of the N X N matrix equation (5) follows
entirely the same process as was described in the preceding
section.

B. Simplification of the Basic Equation

We now assume for simplicity that straight waveguide
sections with appropriate length exist on both sides of the
input and output planes, so that only the TE,r-mode
exists at those planes.? Under this assumption we may
relate Vl ~ Vm and Il ~ Im, Vm+1 ~ V«m,+n and Im+1 ~ Im+n
with simple proportionality formulas. We use representa-
tive values of those voltages and currents defined as V,
and V,: voltages at the center of the input and output
reference planes, respectively; and I, and I,: currents
flowing across the entire widths of the input and output
reference planes, respectively. Since the variation of the
voltage and current across the reference planes are both
sinusoidal,

Vi=aV, I = aulp/m
Ve = eV I, = aod,/m
[ A "
Vm - amVp Im = Olmlp/m
where
(21
o, = SIn om T},
Vo1 = BV, Ingxr = Budy/n
Vm+2 = ﬂzvq I m+2 = ;32[ q/ n
< . . (20)
M Vm+n = ﬁnvq Im+n = 6an/n

2 We may remove half of this assumption, i.e., the presence of the
straight waveguide sections “inside” the reference planes, if we con-
sider (m — 1) and (» — 1) higher order modes in the input and out-
put waveguides, respectively. Then we may take into account the
(probably) reactive waveguide impedances for those higher order
modes, and again no longer need the reduction of the constraints
performed to obtain (22) and (23).
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where

Using the previous relations, we may rewrite (5) as

Far Vo, Fand p/m
m . m
anVp ol p/m
BV, Bulo/n
LU..] n = [Hiyl n o+ (21)
8.7 BT/
0 Ininia
M R
Lo ) F—

Following the procedure desecribed in the preceding sec-
tion, we again define the following (M + 2) X (M + 2)
matrices to decrease the number of constraints, as

LU’]
r m m m  mtn IE m ]
Z Z (&%} U‘U Z E Bj—mUzj i Ut(m+n+1) M
=1 =1 i=1 j=m+l L d=1
m-n m m-n m+n é m4-n
Z Z aJU‘lf Z Z Bj——mUu‘ : Z Ui(m+n+1) e
1=m+1 j=1 fmmtl j=mtl ! f=ml
= m mtn ::
2 Uminini 2 BimUmgnini i Ungmgn =« ¢+ -
=1 F=m-+1 L mtnebl
s Um+n+]l[
L . et
(22)
[H"] = (similar to the above). (23)

Using the previous matrices, we may rewrite (21) in a
form identical to (9). The transfer parameters are also
derived in the same way.

V. EXAMPLES OF NUMERICAL ANALYSIS

A. Short-Cirveuited Radial Line

To show the validity and accuracy of the proposed
method of analysis, two examples of numerical analysis
whose results can be compared with analytical solutions
will first be deseribed. The first example is of the coaxial-
coupled type: a thin radial line terminated by a short-
circuit wall as shown in Fig. 5.
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Fig. 5. A radial line.

Im[Z%B] I AT k=220l
i fM=40/30
25
M=40
30 20
== (2370 w1}
- — == (360]
ﬁ_—_{:ﬁj LRE(Zm)
O == 20T 625 (2]

Fig. 6. The computed input impedance of a radial line. Note that
the real part (abscissa) is exaggerated to show the computational
error.

For such a one-port circuit, the driving-point impedance
is given [ 17, instead of (16), by

—~Z, = B'/D'. (24)

This driving-point impedance has been computed for di-
mensions (see Fig. 5) R, = 1 mm, R, = 10 mm, and d =
0.5 mm, at 21 frequencies ranging between k(=2xf/c) =
200 ~ 400 m~']. Various numbers of divisions have been
used to obtain the estimate of the computation error.

The results of the cases for m = 10 are shown in Fig. 6.
The abscissa and the ordinate show the real and imaginary
parts of the driving-point impedance, respectively. Note,
however, that the abscissa is expanded by a factor of 100
to exaggerate the computation error. Small circles upon
the ordinate show the theoretical values [3]]

. Zod sin (6, — 8,)
J 27R, cos (¢; — 6,)

where subscripts 7 and o represent the inner and outer
boundaries, respectively, 8 and ¢ are the quantities defined
by

Hy® (@) = Jo(@) + jNo(2) = Go(2) exp (j0(2))
JH:® (z) = —Ni(z) +3/1(x) = Gi(2) exp (Jo(2))

where x = kr, and Z,. denotes the wave impedance at the
inner boundary, defined as

Zo: = 1207w {Go(kR;) /GL(ER) I[Q].

The bracketed numerals in Fig. 6 denote the wavenum-

-7, = (25)
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ber in m™%. Some of the broken curves (k = 200,210,
220[m~1]) seem to converge for increasing M to values
diffevent from analytic ones. It is natural because m is
finite.

The estimate of the error obtained from Fig. 6 is several-
tenth ohms for the real part, and several ohms (in most
cascs below 2 Q) for the imaginary part. The series reso-
nance frequency obtained with the numerical analysis is
15.68 GHz (k = 328 m~') for m = 10, M = 40, which
shows an error of approximately 1 percent as conipared
with the analytical value 15.87 GHz (kb = 332 m™).

B. Uniform Waveguide Section

Another example, whose results can be compared with
analytical ones, is a uniform waveguide section. A finite
section of the standard X band rectangular waveguide
with ¢ (width) = 22.9 mm, b (héight) = 10.2 mm, and
{ (length) = 2¢ = 45.8 mm is assimed to be terminated
by a resistive sheet placed perpendicularly with respect to
the waveguide axis; the surface resistance of the sheet is
assumed to be equal to the waveguide impedance

, b 1
o= B T (Ba
at f = 10.00 GHz (k = 209 m™), which is 222.2[Q].

The results of the numerical computation of the driving-
point impedance are shown in Fig, 7(a) with small dots,
~ for m =n = 10, M = 40. In the same figure, the theo-
retical value

[e] (26)

(Z1/Z0) + jtan (2xl/),)

Zin = 2o 1 -+ j{Z1/Zs) tan (2xl/\,)

(27)

is also plotted with small crosses where Zyz, Z, anbd )\,
denote the load impedance (222.2[Q]), the waveguide
impedance at the given frequency, and the wavelength
in the guide, respectively. The complicated part (below,
right) of Fig. 7(a) is shown in Fig. 7(b) in an enlarged
scale.

C. Waveguide Section I'ncluding a Thick Inductive Window

In the following three subsections, more praetical cir-
ouits are analyzed numerically; the obtained results are
compared with the approximate analyses and experimeéntal
data. In those riumerical analyses, for convenience of com-
parison, the obtained transfer parameters are once con-
verted into equivalent T-circuit parameters; this eon-
version process will first be deseribed..

We consider a waveguide section including a symmetti-
cal obstucle, a thick inductive window as in the exdmple
shown in Fig. 8(a), and represent the entire section by
three equivalent circuits: those of two straight sections
and an equivalent T-eircuit of thé obstacle itself.

If we denote the transfer parameters of the entire sec-
tion, the straight scetions and the obstacle by F., Fy, and
Fr, respectively,

(P = [F [ Fs ] FL]

I the straight sections are lossless;

(28)

[l Im(Zin .
b ets0 1)

g T
A& IR
Vd ~

100}

/

) Wi
001a1 7 RelZin)
N\ Vg

it

-100L \

20 rim(Zin’
[a}

Pt

e ke i
7 .:.)Z\k-Zl.O[m ]

k=200

) 2301al.
Re(Zi)

(b)

Pig. 7. The computed input impedance of a wavegiide section.
(a) The overall frequency characteristics. (b) An enlarged figure
of a portion.
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(a)
E:L-j Zy Z'fb._o tf‘[‘""*
Zoik) Zq Zolk)
O— .—AF O N
T T
(b)

Fig. 8. Equivalent circuit representation of a symmetrical wave-
guide obstacle. (a) A thick inductive window (an example). (b)
The equivalent T-circuit répresentation.

T cos (21rL> 7 sin <2frrL)-1
O
N JA0 SIS

G=C) =6

[F.] = (29)




OKOSHI AND KITAZAWA: SHORT-BOUND.ARY PLANAR CIRCUITS

From the elements of F., computed numerically and those
of F1, the elements of Fr are obtained as

Ar Br
= [Fo ' [FeJ0FL T
Cr Dr

On the other hand, Fr is expressed by the T-circuit param-
eters as :

[Fr] = (30)

Za + Zb 2Z¢Zb + sz

[Fr] = (1/Z) (31)

1 Za+ Zy

Hence, the normalized T-circuit parameters are given in
terms of the computed elements of Fr as

Z, 1 X,

= LjE 32
Zy CTZ0(=JZ0) (32)
Zy Ap—1 ( ,Xb>

=3 & —iZt). 3
Z CqZyo o JZO ( 3)

Fig. 9 shows the results of computer analyses of the
frequency characteristics of thick inductive windows. The
ordinate gives the normalized T-circuit parameters X,/Z,
and X,/ Z. The dimensions of the circuit are assumed to be

Case 1:
e=229mm d/2=22mm [= 229 mm
v L = 24,045 mm
Case 2:
a=229mm d/2=229mm [=458mm
L = 25.19 mm.

The total sampling-point number is 66 in case 1, and 68 in
case 2.

The dots in Fig. 9 show the results of the computer
analyses. The crosses show the approximate theoretical
values described in [4]. The difference between dots and
crosses is found to be less than 0.02. (The errors in X,/Z,
might seem rather large; however, note that the scales of
the ordinate for X,/Z; and X./Z, are different.)

D. Waveguide Sections Including Corners

The dots in Fig. 10 show the results of the computer
analyses of 30° and 60° waveguide corners. The ordinate
again shows Xo/Zy and X,/Zo. The circuit dimensions are
a = 22.9 mm and L = 22.9 mm, and the total sampling-
point number'N = 66fora = 30°and N = 72for a = 60°.
Small crosses in the figure show the experimental data
found in [4].

E. Waveguide Sections Including Post

The dots in Fig. 11 show the results of the computer
analyses of waveguide sections including post. The circuit
dimensions are ¢ = 22.9 mm and L = 22.9 mm, and the
total sampling-point number N = 72, including 12 points
around the post. Small crosses show the experimental data
found in [4]. - ‘ ‘
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Fig. 9. The computed equivalent-circuit parameters of thick
inductive windows. Crosses show the results of the approximate
analysis described by Marcuvitz [4].
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Fig. 10. The compuied equivalent-circuit parameters of wave-
guide corners. Crosses show the experimental data described by
Marcuvitz [4].
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Fig. 11. The computed equivalent-circuit parameters of a post
in a waveguide. Crosses show the results of the approximate
analysis described by Marcuvitz [4].

VI. CONCLUSION

The basic program for the computer analysis of arbi-
trarily shaped, short-boundary planar circuits has been
completed. The validity and error of the proposed method
of analysis has been shown through comparison with
theories. The required computer time is still long; for
example, about 10 min are required to obtain all the dots
in Fig. 9 using HITAC-8800, one of the standard Japa-
nese high-speed computers. The improvement of the
program toward shorter computer time and better accu-
racy is left for further efforts.

APPENDIX

PROOF OF (1) FOR A MULTIPLY CONNECTED
CIRCUIT PATTERN

We now consider a planar cireuit pattern having a hole
as shown in Fig. 12(a). We connect the outer and inner
boundaries, C; and Cs, with contours C; and €, which are
infinitesimally separated, and give a direction of integra-
tion, as shown in Fig. 12(b), to define 6. For the entire
contour C; + Cz + Cs + C4, obviously (1) holds. How-
ever, for the corresponding points upon C; and C; [ see Fig.

12(c) ],
[V(SO) ]Cs = [V(So)]c4
[7n(s0) Joz = —[4n(80) Jes

must be satisfied.

(34)
(35)
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(b)
(8l (S)
C. \ Cs
{So)
191(
Cs
()

Fig. 12. Proof of (1) for a multiply connected planar circuit pattern.

The voltage V(s) in the left-hand side of (1) in the
text needs to be known only upon C; and Cs.. If we con-
sider cases in which s is located somewhere upon Ci or
(. and s is located somewhere upon C; and (', we obtain
for the corresponding points upon C; and C;

[0]es = [0]es + . (36)

Hence,
[cos 8¢z = —[cos 0 ]cs (37)

Putting (34), (35), and (37) into the right-hand side of
(1), we find that the integrals along Cs and C cancel each
other. Hence, we may apply (1) to a pattern like Fig.
12(a) provided that the direction of integration along
C1 and C; be carefully defined.
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